
Maintaining Diversity in The Bounded Pareto-Set:
A Case of Opposition Based Solution Generation Scheme

AKM Khaled Ahsan
Talukder

Department of Computer
Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
talukde1@msu.edu

Kalyanmoy Deb
Department of Electrical and

Computer Engineering
Michigan State University

East Lansing, MI 48824, USA
kdeb@egr.msu.edu

Shahryar Rahnamayan
Department of Electrical,
Computer and Software

Engineering
University of Ontario Institute

of Technology
Oshawa, Canada

shahryar.rahnamayan@uoit.ca

ABSTRACT
For more than two decades, stand-alone evolutionary multi-
objective optimization (EMO) methods have been adequate-
ly demonstrated to find a set of trade-off solutions near
Pareto-front for various multi-objective optimization prob-
lems. Despite a long-standing existence of classical generat-
ive single-objective based methods, a very few EMO studies
have combined the two approaches for a better gain. In this
paper, we investigate the effect of seeding the initial popula-
tion of an EMO algorithm with extreme solutions obtained
using a single-objective method. Our proposed approach
is further aided with an opposition based offspring creation
mechanism which strategically places new solutions on the
current Pareto frontier by a simple, yet a novel arbitration
policy that utilizes the relative distances from the extreme
solutions in the current population members. We conduct
an extensive simulation of our proposed approach on a wide
variety of two and three-objective benchmark MOP test
problems. Results are shown to be remarkably better than
the original EMO approach in terms of hyper-volume metric.
The results are interesting and should motivate EMO re-
searchers to integrate single-objective focused optimization
and an opposition-based concept with diversity-preserving
EMO procedures for an overall better performance.

Keywords
Single objective Search, Multiobjective Optimization, Op-
position Based Learning (OBL)

1. INTRODUCTION
In the recent years, the idea of Opposition Based Learn-

ing (OBL) has been enjoying a noticeable attention among
the AI and OR practitioners. The idea of OBL is to accel-
erate the learning rate (or convergence rate) by imposing an
opposite estimate of the current solution, and deliberately

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931652

introducing them to influence the search trajectory. This
idea was first introduced in [10] and has been demonstrated
its effectiveness in different scenarios – from Reinforcement
Learning (RL) [11], Differential Evolution (DE) [8] to robot-
ics [5].

In all of the cases, the OBL comes first into play during
the initialization phase of the learning algorithm (or optim-
ization algorithm), the argument behind this strategy is that
a completely arbitrary (i.e. blind) initialization is no better
than an informed boot-strap. There are also several formal
proofs that show that, in general, the opposite estimations
are more likely to be closer to the optimal solution than the
completely arbitrary ones, a formal probabilistic analysis of
opposition based learning can be found in [4].

Moreover, especially for the case of optimization algorithms,
it has been demonstrated that keeping a small ratio of can-
didate solutions with the opposite estimate help to converge
faster [8] – and most of the recent studies are inspired by
this approach. For example, similar strategy has been used
in [6]. Another relevant study can be found in [12], where
the opposition based initialization has been tested with the
Particle Swarm Optimization (PSO) scenario to induce a
better convergence. Given all of these studies, still we could
not find a good example of this idea of “Opposition-based
Learning” applied to the Evolutionary Multi-objective Op-
timization (EMO) scenarios. In this study we will try to fill
this gap in an interesting way.

In our approach, we will address this idea of opposition in
a different perspective, we will classify1 the solutions with
respect to some desired traits that we will like to have. Then
we will use this information to deterministically2 generate
new solutions in a most viable locations in the search space
– and this operation will be dictated by our special notion
of opposition. In fact, our approach is somewhat similar in
spirit to the previous studies done in [9] and [15]. Our ap-
proach is extremely simple and does not assume any special
property on the underlying search space, moreover, our ap-
proach does not build a computationally expensive models.

This paper is organized as follows – first, we will discuss
why this idea of OBL needs to be reinterpreted for the Multi-

1not to be confused with the term “classification” as in the
machine learning domain
2Here, our method is not “deterministic” in a general sense,
the stochasticity incurred by the candidate generation is not
equivalent to the generic mutation operation.

945

objective Optimization (MOP) setting. Next we discuss one
interesting limitation that most EMO algorithms suffer from
– the search trajectory bias, and also give some argument on
why such hindrance becomes inevitable. Then we will dis-
cuss how the idea of OBL can come into rescue. In our
model, we generate the opposite points in a strictly determ-
inistic way, by carrying out the arbitration of opposition in
a different (and a more MOP relevant manner). To do this,
we utilize the extreme solutions on the true Pareto-front
(PF), and the next section discusses how to find them effi-
ciently. After that we will describe our main algorithm in
details. Then we will show our experiments with different
benchmark MOP problem sets.

2. AN ALTERNATIVE INTERPRETATION
OF OPPOSITION

As we have already discussed in the previous section, in
most of the studies, the idea of opposition is employed as an
incorporation of new candidate solutions with a certain kind
of opposite traits into the existing population. Such traits
could be interpreted in terms of different problem domain
perspectives. For example, the opposite solutions could be
– i) the ones with complete opposite representation from
the current best individual, ii) the ones with the opposite
estimates from the other spectrum of the variable bounds
(i.e. in the case of real valued optimization). However, the
injection of the opposite solutions could cause a re-route
from the continuing search trajectory and thus could be a
misleading operation – in a sense that the opposite candidate
solutions might be useful given that the search space follows
a desired pattern.

Moreover, in the case of black-box optimization scenarios,
we hardly have a room to make any assumption about the
search space. Keeping this fact in mind, in this paper, we
have revised the notion of opposition in terms of the pref-
erence criteria imposed on a solution. For example, most
EMO algorithms aim to maximize two principal properties
– i) the convergence and ii) the diversity, since the quality
of a MOP solution depends on these two factors. Let us
re-consider the opposite point generation/injection from a
different perspective –

• Opposite Convergence: A solution far from the true
Pareto-front is opposite to any solution that is closer
to the true Pareto-front.

• Opposite Diversity: An isolated solution on the true
Pareto-front is opposite to a crowded solution.

By taking the above two principles into account, we will
deterministically generate opposite candidate solutions dur-
ing the search. Obviously, the deterministic candidate gen-
eration scheme will only consider an opposite trait that is
good. In the next section we will see, how the existing EMO
algorithms show the limitations in maintaining this two op-
posite traits during the search (i.e., solution generation) pro-
cess.

3. LIMITATIONS OF CANONICAL EMOs:
THE SEARCH TRAJECTORY BIAS

Most of the standard EMO algorithms (e.g. NSGA-II,
SPEA-II [17] etc.), are elitist by design. They are also “op-
portunistic” in a sense that the population always tries to

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f2

f1

search trajectory bias

Figure 1: The effect of the search trajectory bias could be
seen when we try to solve ZDT4 problem with NSGA-II (at
generation 46, population size 100). Here we can see a long
streak of crowded solution near the objective f2, where the
distribution of solutions near the objective f1 is extremely
sparse.

converge to a particular portion of the Pareto-front (PF)
which seems to be easier to solve at that moment. There-
fore, they show preferences over a certain objective function
which needs less exploration than the other. We can see a
loss in diversity during the search when we try to solve the
ZDT4 problem using NSGA-II. In this case, the objective
f2 is easier to optimize than f1, the readers can verify this
fact from the Figure 1. The search trajectory deliberately
accumulates more points over the objective f2 to explore
one particular portion of the Pareto-front. Moreover, while
putting more solutions to the vicinity of one particular ob-
jective axis, the search trajectory looses the uniformity by
forming a crowded streak of points along that axis (i.e. f2);
on the other hand we can see that there is almost no solution
on the other spectrum of the objective space (i.e. f1). This
kind of non-symmetric search behaviour is, we think, causes
a hindrance to keep a uniformly diverse solutions during the
search process. So it would be helpful if we could selectively
inject points during the search where the solution distribu-
tion is more sparse. In addition, we also believe that this
biased nature of the search trajectory could degrade with
the addition of more objective functions. Furthermore, this
could also lead to a stagnation on the local optima, given
that the search space has many of them.

Given this specific scenario, now the main problem is to
devise a way to deterministically generate points where the
distribution of the solution is sparse. Here we assume that
the lesser the number of candidate solutions in a vicinity of
objective fi, the harder it is to solve. This would be easy if
we know the exact mapping of the design variable to object-
ive values – however such mapping is always unavailable and
above all it is very expensive to infer. Another way could
be to mutate the points where the solution is more sparse,
but we think as the original algorithm already goes through
such step, it is not going to be very effective.

In this paper, we are going to demonstrate a very effective
approach to address the above discussed issue, we will show
how we can maintain a balanced lateral distribution of solu-
tions along the entire search operation. The proposed ap-
proach is also extremely effective in enhancing convergence
speed.

946

4. THE DETERMINISTIC OPPOSITE
SOLUTION GENERATION SCHEME

As we have discussed in the Section 2, we will utilize the
so-called notion of opposition to deterministically generate
points into strategically useful places on the search space.
In principle, we do not assume any exact mapping over the
design variables to objective values, and we apply a linear
translation to achieve our goal effectively. The justification
is trivial –

if a solution xi is better on objective fi, and if we want it
to be better on fj, then we can translate the vector closer to
xj, which is already better on fj.

So, the initial step is to approximate the bound of true PF
before starting the actual optimization run. To do this, we
depend on k number (k = number of objectives) of extreme
(or near/approximated extreme) points on the true PF since
we can safely assume that the population will eventually
reach to the vicinity of those extreme points in the end, be-
cause the extreme points belong to the feasible space. These
extreme points will be used as a pivot to arbitrate between
the opposite traits over the existing solutions. Also note
that we are not going to explicitly define which portion of
the search space is less easy (or hard) and so forth, rather
we will try to devise a technique that will implicitly address
and solve such issues on the fly.

Another reason to fixate over the k extreme points is that
we also wanted to keep the algorithm simple so that it can
only utilize the “minimal information” to approximate the
bound of true PF. We also think it’s valid to assume that
any PF could be bounded by at least k-extreme points for
any k-objective problem. Although, if we could supply other
intermediary points within this bound, we will be able to see
a better performance gain with the existing model. But a
supply of 1 extra solution (within the bound) comes with an
added cost of running a full blown single objective optimiz-
ation run. As the extreme (or near extreme) points are the
pivot to define the notion of opposite in our case, we will
discuss how to find them efficiently in the following section.

4.1 Finding the Extreme Solutions
Extreme points on the Pareto-front could be found using

global search as well [3], however our goal was to save the ex-
tra computational cost as much as possible3. Therefore, we
resort to the classical single-objective optimization methods
to solve this problem. Our choice of such algorithms were
limited to, namely, the Interior Point (IP) method and the
Mesh Adaptive Direct Search (MADS)4. As we also did not
want to spend the valuable solution evaluations for this pur-
pose, we have conducted this extreme solution search as a
fixed budget operation. Depending on the difficulty of the
problems, appropriate routine parameters were empirically
found out which are problem dependent. These settings can
be summarized as follows:

3The readers might be aware that efficiently finding the ex-
treme points on the true Pareto-front is itself a separate
research problem [3].
4We have used the fmincon() and the patternsearch()
routine in MATLAB (v. R2014a) for IP method and MADS
respectively. A detailed discussion on these algorithms can
be found elsewhere [7] [1].

Algorithm 1 Find Extreme Points

1: k ← no. of objectives
2: Np ← population size
3: Ngen ← maximum generation
4: T ← 1

k
(1
4
NpNgen)

5: E∗ ← ∅, an empty solution set
6: for i from 1 to k do
7: fi ← i-th objective function
8: z← random initial vector
9: repeat

10: z← solve fi
11: until T

2
solution evaluation reached

12: faasf ← construct AASF function from fi
13: repeat
14: x← solve faasf with z
15: until T

2
solution evaluation reached

16: E∗ ← {E∗ ∪ x}
17: end for
18: return E∗

• If the problem has no local optima then we use IP
method, it has been found (empirically) to be compar-
atively less expensive even if the variable size is large.

• If the problem has local optima, MADS is faster for
finding more accurate extreme points. Also, this ob-
servation is confirmed with empirical experiments.

The actual extreme point computation algorithm was con-
ducted in two steps – given a particular objective function
fi, first we try to solve it directly using either IPM or MADS
(depending on the problem type); then after some T

2
iter-

ations once we find a reference solution z that is hopefully
close to fi’s optima, then we construct a so-called Augmen-
ted Achievement Scalarizing Function (AASF) [14] from fi
as faasf = maxk

j=1 wj(fj(x) − fj(z)) + ρ
∑k

j=1 wj(fj(x) −
f(z)) and solve it again for T

2
iterations. Here, we set

wi = 0.9, wj 6=i = 1
10(k−1)

and ρ = 0.0001. The choice of

wi values are trivial, and ρ is followed from [3].
To limit the solution evaluations, we kept T to a con-

stant value (as a budget). For all problems, we have fixed
this maximum iteration count to the 1

4
-th of the total gen-

eration specified. More precisely, T = 1
k

(1
4
NpNgen), where

k = no. of objectives, Np = population size and Ngen =
maximum generation. A basic listing for this routine is
presented in Algorithm 1. The set of the extreme points
E∗ generated from this algorithm may not contain all the
unique solution, and also they might not be the true ex-
treme always, they can be weakly dominated solutions by
the true PF extremes. However, our approach can utilize
them efficiently to converge to the true PF extremes.

4.2 Generating the Opposite Solutions
Once the extreme points are discovered, now we utilize

them to generate the so-called opposite points during the
main evolutionary runs. On each generation, we select 25%
of the best individuals (front-wise) from the current popula-
tion and deterministically change them to generate opposite
solutions – in such a way that we can address the strategic-
ally preferable places. And to conduct this variation, we
will utilize the points in the set E∗ as pivot points. We call
these points as “pivot” since we will selectively try to gener-

947

f1

f2

f(v ∈ E∗)

f(v ∈ E)f(v ∈ G)

f(xc)

f(xp)

True PF

Current Front

L1

L3

L2

x1

x2

v ∈ E∗

v ∈ E

v ∈ G

xc

xc

xc

xp

True PS

Current Front

L1

L2

L3

f(xc)

f(xc) d

[3d4 , 5d
4]

in The Variable Space

Figure 2: The illustration of lines 9–12 in Algorithm 3. The right axes are the variable space and the left axes are the
corresponding objective space. The point xc is the child (black circle) and xp is the parent (white circle). The point v are the
pivot points (grey circles). The operation will choose one of the directions denoted by L1, L2 or L3 arbitrarily. If xc violates
the variable bound then it is reverted back to the vicinity of the corresponding pivot point v.

ate points around these pivots. However, before doing this,
we will refine our pivot points E∗ in a certain way.

The refinement starts by finding the current population
extreme points Ec and merging them with the set E∗ such
that E = {Ec∪E∗}. Next we apply the non-dominated sort
on E to find the Pareto-front within this set. We apply this
sorting because we are not still sure if E∗ contains true PF
extremes. This sorting will keep the true extreme points if
ones are found in the later generations. After this step, we
select the points from E that are on the best front and with
∞ crowding distances. Let us denote these selected points
as E′. Now at this point, two situations are possible:

• The set E′ contains only the solutions E∗ when we are
not converged to PF yet, or

• The set E′ contains the solutions Ec, if the whole pop-
ulation reach to PF, then Ec are the PF extreme.

However, during the intermediate generations, it is possible
that we may include some solutions into E that weakly dom-
inate a subset of points already in E, this inclusion will re-
duce the expected spread of the pivot points – that may
diminish the effect of maintaining the diversity. For ex-
ample, if the actual true PF is a broken Pareto-front, and if
E contains the extreme points from one broken edge, then
we need to expand the current edges so that the refinement
procedure can include points from the further extreme ends.
Therefore, if there exist a point in E−E′ that is on the best
front and also weakly dominated by any point in E′, then
we replace the weakly dominating point from E′ with the
one from the set E − E′. The readers might have already
noticed that |E′| ≤ |E|.

Now, at this point, we can say that the set E′ contains
either approximated PF extremes (or points near them).
Now if we can generate new points near E′, they will in-
duce both better convergence and diversity. In section 3, we
have discussed a scenario where we can see how the bias in
the search trajectory is introduced. However, the difference
in the relative difficulty of the objective functions may not

Algorithm 2 Generate Pivot Points

Require: true PF extreme points E∗ from Algorithm 1
1: Ec ← the extreme points from the current PF
2: E ← {E∗ ∪ Ec}
3: rank points in E, E → {F1,F2, . . . ,Fn}
4: take the best front in E′, E′ ← F1

5: for all points pi in E − E′ do
6: if pi weakly dominates any pj ∈ E′ then
7: replace pj by pi
8: end if
9: end for

10: update E∗, E∗ ← E′

11: G← find k intermediary gaps from the current PF
12: E′ ← {E′ ∪G}
13: return E′

be the only reason for a bias. The imbalance in the solu-
tion distribution could happen for other reasons as well. For
example, a disconnected Pareto-front, a local optimal front
or a specific portion of the Pareto-front being more difficult
to solve than the rest. In such cases, we loose the diversity
in the trade-off solutions and gaps start to form over the
Pareto-front during the search, we can see such pathologies
in many problems (especially in ZDT4 problem). To address
such diversity loss, we also find the solutions with k-highest
(k = no. of objectives) crowding distance from the best front
that are not∞, and call them as set G. Clearly, the G solu-
tions are those that reside on the edge of the broken front.
Now we add the G to the set E′, thus we make E′ (|E′| > k)
as the final “pivot” solutions to generate the opposite points
(see Algorithm 2).

4.3 Integrating into an Elitist EMO
Algorithm: NSGA-II

As we have mentioned at the beginning that we select
front-wise best 25% of the current population for opposite
point generation. We go through each of them randomly

948

and every time we pick k number of random points from E′

and pick the pivot point that is the furthest from it, and find
the opposite vector using a linear translation. A straight-
forward way – given a pivot vector v and a parent vector xp,
we generate an opposite child xc as xc = xp +U[(3d

4
, 5d

4
)] ◦

(1
d
(xp − v)). Here, d = ||v − xp||, U[(d, u)] is a uniform

random vector where each element is within the range [d, u]
and ◦ denotes Hadamard product. The overall procedure is
presented in Algorithm 3 in line 9–12 and illustrated in the
Figure 2. The lines 9–12 in Algorithm 3 can be recapped
as follows: v is on the true PF extreme and xi is far from
v, therefore, move xi closer to v – opposite of far is close.
Similar interpretation can be made when the vector v is an
intermediary gap.

Moreover, upon generating the vector xc, one of the vari-
able values might go beyond the variable bounds (i.e. xj >
xjH or xj < xjL), in that case, we replace the overshot
value from the corresponding variable value vj from the
pivot point v. Therefore, if a certain vector xc can’t make a
successful translation, then xc is reverted back to the vicin-
ity of v. Thus, we assure a local best estimated translation
of the parent vector xp. This process is done on the line 13
of the Algorithm 3.

When we apply this algorithm to NSGA-II, we follow the
obvious way, the generated opposite population will be in-
serted into the child population Qt, the Algorithm 3 also
shows how to integrate everything in NSGA-II. Moreover,
this algorithm is “pluggable” in a sense that we can integ-
rate it to any other elitist EMO algorithm. In the following
section, we are going to see in details, how our opposite gen-
eration algorithm drastically improves the convergence rate.
The readers should be aware that the 25% allocation was
found by empirical experiments, and also to be better for
most of the test problems.

5. EXPERIMENTS AND RESULTS
First we have tested the performance of Algorithm 3 on

five 2-objective problems [16], namely ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6, and we have set NSGA-II as the con-
trol. To maintain a fair comparison, we have compensated
the extra solution evaluations by the Algorithm 1 for the
NSGA-II runs, and compared NSGA-II and Algorithm 3
side by side. The performance measure for our test was
Hypervolume (HV) [13], and we are interested to see which
algorithm can reach to a desired HV within less solution eval-
uations (SE). For all problems, we have seen our algorithm
can demonstrate a very steep convergence to the true PF,
even when the extra SE from Algorithm 1 are compensated
for NSGA-II.

Moreover, as we already know, the standard test problems
are designed from some of the well known single-objective
optimization functions. For example, in the case of ZDT4,
g(~x) is the well known Rastrigin’s function, and the two ob-
jectives are related as f2 = 1−

√
f1. Therefore, each solution

on the true PF follows a well-defined pattern – the variables
x2, x3, . . . xn are all the same (solution to the Rastrigin’s
problem) and the first variable x1 defines the trade-off. As a
result, if our algorithm can find any solution on the true-PF
at a certain time instance, the overshoot-correction on the
line 13 of Algorithm 3 have a good chance of creating a valid
neighbouring solution. To mute such an un-warranted ex-
ploration, we have changed the problem definition in such a
way that all the solutions on the true-PF will have x1 = 0.5,

Algorithm 3 NSGA-II with Opposition

Require: true PF extreme points E∗ from Algorithm 1
1: N ← population size |Pt|
2: Ngen ← maximum generation
3: t← 1
4: while t ≤ Ngen do
5: P ′t ← front-wise best 25% from Pt and shuffle
6: E′t ← construct pivot set E′ using algorithm 2
7: Ot ← ∅
8: for each solution xi ∈ P ′t do
9: S ← pick k random solutions from E′t

10: v ∈ S such that v is the furthest point from xi

11: d← ||v − xi||
12: xc ← xi + U[(3d

4
, 5d

4
)] ◦ (1

d
(xi − v))

13: xj ← vj ∈ v if xj ∈ xc > xjH or xj ∈ xc < xjL
14: Ot ← {Ot ∪ xc}
15: end for
16: Pt ← {Pt ∪ E∗}
17: Rt ← {Pt ∪Qt}
18: rank Rt into fronts, Rt → {F1,F2, . . . ,Fn}
19: Pt+1 ← ∅
20: i← 1
21: while |Pt+1|+ |Fi| ≤ N do
22: assign crowding distances on the front Fi

23: Pt+1 ← {Pt ∪ Fi}
24: i← i+ 1
25: end while
26: sort Fi in descending order using ≺n

27: Pt+1 ← the first N − |Pt+1| solutions from Fi

28: Qt+1 ← select, crossover and mutate Pt+1

29: randomly insert all xi ∈ Ot into Qt+1

30: t← t+ 1
31: end while

so that the Pareto-set is consisted of a straight line located
at x1 = 0.5 instead of x1 = 0.0. Such modifications are done
on the problems where appropriate.

All the results are collected from 31 independent runs star-
ted with non-identical random seeds. In all plots, onsga2r
stands for Algorithm 3. The extra cost to find the extreme
points are indicated with a “T” arrow on the x-axis. During
computation of the HV measure, we have set the reference
point to {2.0, 2.0} for all problems except ZDT6, where it
has been set to {4.0, 4.0}. The Table 1 summarizes the per-
formance measuring parameters, the second column shows
the ideal hypervolume of each of the PF of the correspond-
ing problems. The second and the third column presents the
number of SE have been spent to reach 90% of the HV by
each of the algorithms. To ensure a completely fair compar-
ison, for all instances, we have excluded the solutions in E∗

during the HV computation.
The experiment with ZDT1 is illustrated in Figure 5, here

we can see that the Algorithm 1 takes up to around 2K of
solution evaluations. Given that, NSGA-II still lags behind
with a multiple factors to reach the desired PF. We have seen
similar effect on all the rest of the problems ZDT2, ZDT3,
ZDT4 and ZDT6. Except for ZDT3, we have observed some
fluctuations due the disconnected nature of the true PF.

Moreover, our approach can also efficiently solve the issue
of search trajectory bias, if we look at the Figure 3b, we can
see that the new solutions are deterministically generated
where the explorations are not done thoroughly yet. Due
to the space constraints, we present a subset of the results
in the Figure 6. In this paper, we only present the results
for those problems that are comparatively harder to solve,

949

-0.5

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2

f1

front being constructed
using the deterministically
generated solutions

extreme solutions

completed fronts

(a) Exploration of ZDT3 at generation 18

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

f2

f1

deterministically
generated solutions

bias correction

(b) Exploration of ZDT4 at generation 21

Figure 3: This figure illustrates how our algorithm deterministically identifies which front needs to be explored first and
gradually discovers the entire PF. The example here demonstrates a case of ZDT3 problem (Figure 3a). The outlier dots
(orange) represents the deterministically generated solutions that did not survived because they are weakly dominated. The
light green dots are those that are deterministically generated and survived. In the case of ZDT4 (Figure 3b), we can see how
the bias and gaps have been corrected by our approach.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.0 2.0k 4.0k 6.0k 8.0k 10.0k 12.0k 14.0k 16.0k 18.0k 20.0k

h
y
p

e
rv

o
lu

m
e

solution evaluations

co
st

 t
o
 fi

n
d

 E
*

onsga2r
mean

median
nsga2r

(a) Convergence test for ZDT4 problem

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.0 2.0k 4.0k 6.0k 8.0k 10.0k 12.0k 14.0k 16.0k

h
y
p

e
rv

o
lu

m
e

solution evaluations

co
st

 t
o
 fi

n
d

 E
*

onsga2r
mean

median
nsga2r

(b) Convergence test for ZDT6 problem

Figure 4: These plots illustrates the comparative analysis of the convergence rates for 2-objective problems (ZDT4 and ZDT6),
the curves are actually consisted of box-plots. Here onsga2r denotes our algorithm and nsga2r is NSGA-II.

Problem Ideal Reference NSGA-II Algorithm3
HV Points: 90%-IHV 90%-IHV

(IHV) (f1, f2, f3) / SE / SE
ZDT1 3.67 (2.0, 2.0) 5100 1909
ZDT2 3.34 (2.0, 2.0) 7700 2164
ZDT3 4.82 (2.0, 2.0) 4900 8497
ZDT4 3.67 (2.0, 2.0) 14500 4950
ZDT6 15.35 (4.0, 4.0) 10500 1539

DTLZ1 999.98 (10.0, 10.0, 10.0) 24800 11602
DTLZ2 7.48 (2.0, 2.0, 2.0) 1200 10602
DTLZ3 3374.98 (15.0, 15.0, 15.0) 30600 11802
DTLZ4 7.48 (2.0, 2.0, 2.0) 1800 2022
DTLZ5 6.1 (2.0, 2.0, 2.0) 1200 1226
DTLZ6 55.6 (4.0, 4.0, 4.0) 29400 24602
DTLZ7 134.20 (10.0, 10.0, 10.0) 9200 3606

Table 1: The ideal HV, corresponding reference points. The
last two colums represent the total number of SEs to attain
90% of the ideal HVs for both algorithms over the bench-
mark problems. For DTLZ7 problem, the ideal HV is ap-
proximated using a Monte-Carlo sampling.

i.e. problems with local-optima, disconnected fronts, non-
uniform densities in the true PF etc.

6. CONCLUSIONS AND FUTURE WORKS
The main contribution of this paper is the incorporation of

opposite point generation scheme in a different perspective.
Our approach also shows that a simple and a deterministic
scheme can aid the EMO optimization algorithm in a very
interesting way. Our technique is also easy to implement
and offers less overhead to the host algorithm. This ap-
proach can also correct the search bias introduced by the
problem difficulty in an automated and predictable manner.
The original idea of the Opposition Based Learning (OBL)
is quite interesting; and we can make more of it if this idea
is utilized in a more meaningful way – we think this is the
main contribution of our study.

However, in the future we want to address some other
interesting issues with our current study, especially in the

950

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.0 2.0k 4.0k 6.0k 8.0k 10.0k 12.0k 14.0k 16.0k 18.0k

h
y
p

e
rv

o
lu

m
e

solution evaluations

co
st

 t
o
 fi

n
d

 E
*

onsga2r
mean

median
nsga2r

Figure 5: The convergence test of Algorithm 3 (onsga2r)
vs. NSGA-II on problem ZDT1. The curves are actually
consisted of box-plots, and for the Algorithm 3 (onsga2r),
the medians are joined with a line. Here we can see that HV
is 0 upto 1.8k SE and then abruptly reaches to 2 (the long
vertical line at the beginning of Algorithm 3’s curve).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.0 5.0k 10.0k 15.0k 20.0k 25.0k 30.0k 35.0k 40.0k 45.0k

h
y
p

e
rv

o
lu

m
e

solution evaluations

co
st

 t
o
 fi

n
d

 E
*

onsga2r
mean

median
nsga2r

Figure 6: These plots illustrates the comparative analysis
of the convergence rates for a 3-objective problem DTLZ3,
the curves are actually consisted of box-plots. Here onsga2r
denotes our algorithm and nsga2r is NSGA-II.

“many-objective” problems. Moreover, we think there are
also a possible scope in changing the idea opposition for ref-
erence point based many-objective algorithms like MOEA/D
and NSGA-III [2]. In the future research, we hope to invest-
igate these ideas.

7. REFERENCES
[1] C. Audet and J. J. E. Dennis. Analysis of generalized

pattern searches. SIAM Journal on Optimization,
13(3):889–903, 2002.

[2] K. Deb and H. Jain. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based
Nondominated Sorting Approach, Part I: Solving
Problems With Box Constraints. Evolutionary
Computation, IEEE Transactions on, 18(4):577–601,
Aug 2014.

[3] K. Deb, K. Miettinen, and S. Chaudhuri. Toward an
Estimation of Nadir Objective Vector Using a Hybrid
of Evolutionary and Local Search Approaches.

Evolutionary Computation, IEEE Transactions on,
14(6):821–841, Dec 2010.

[4] M. Ergezer and D. Simon. Probabilistic properties of
fitness-based quasi-reflection in evolutionary
algorithms. Computers & Operations Research, 63:114
– 124, 2015.

[5] J. Kulk and J. Welsh. Using redundant fitness
functions to improve optimisers for humanoid robot
walking. In Humanoid Robots (Humanoids), 2011 11th
IEEE-RAS International Conference on, pages
312–317, Oct 2011.

[6] X. Ma, F. Liu, Y. Qi, M. Gong, M. Yin, L. Li, L. Jiao,
and J. Wu. MOEA/D with opposition-based learning
for multiobjective optimization problem.
Neurocomputing, 146:48 – 64, 2014.

[7] M. J. D. Powell. Numerical Analysis: Proceedings of
the Biennial Conference, chapter A fast algorithm for
nonlinearly constrained optimization calculations,
pages 144–157. Springer, Jun 1978.

[8] S. Rahnamayan, H. Tizhoosh, and M. Salama.
Opposition-Based Differential Evolution. Evolutionary
Computation, IEEE Transactions on, 12(1):64–79, Feb
2008.

[9] V. Tirronen, F. Neri, and T. Rossi. Enhancing
Differential Evolution frameworks by scale factor local
search - Part I. In Evolutionary Computation, 2009.
CEC ’09. IEEE Congress on, pages 94–101, May 2009.

[10] H. Tizhoosh. Opposition-Based Learning: A New
Scheme for Machine Intelligence. In Computational
Intelligence for Modelling, Control and Automation,
2005 International Conference on, volume 1, pages
695–701, Nov 2005.

[11] H. R. Tizhoosh and S. Rahnamayan. Learning
Opposites with Evolving Rules. CoRR,
abs/1504.05619, 2015.

[12] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and
M. Ventresca. Enhancing particle swarm optimization
using generalized opposition-based learning.
Information Sciences, 181(20):4699 – 4714, 2011.
Special Issue on Interpretable Fuzzy Systems.

[13] L. While, L. Bradstreet, and L. Barone. A Fast Way
of Calculating Exact Hypervolumes. Evolutionary
Computation, IEEE Transactions on, 16(1):86–95, Feb
2012.

[14] A. Wierzbicki. The Use of Reference Objectives in
Multiobjective Optimization. In G. Fandel and T. Gal,
editors, Multiple Criteria Decision Making Theory and
Application, volume 177 of Lecture Notes in
Economics and Mathematical Systems, pages 468–486.
Springer, 1980.

[15] X. Zhang and S. Y. Yuen. A directional mutation
operator for differential evolution algorithms. Applied
Soft Computing, 30:529 – 548, 2015.

[16] E. Zitzler, K. Deb, and L. Thiele. Comparison of
Multiobjective Evolutionary Algorithms: Empirical
Results. Evolutionary Computation, 8(2):173–195,
2000.

[17] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In
Evolutionary Methods for Design, Optimisation, and

Control, pages 95–100. CIMNE, 2002.

951

